Journal of Organometallic Chemistry 71 (1974) 27–38 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

ÜBER ORGANOMETALL—QUECKSILBER-VERBINDUNGEN DES TYPS R_3C —Hg—MR'₅ (M = Si, Ge, Sn, Pb)

1. DARSTELLUNG UND STABILITÄT DER VERBINDUNGEN

TERENCE N. MITCHELL

Lehrstuhl für Organische Chemie der Universität Dortmund (Deutschland) (Eingegangen den 12. Oktober 1973)

Summary

The preparation of compounds $R_3C-Hg-MR'_3$ (R= Si, Ge, Sn) is described and the stability of such compounds to heat and light discussed. When R = Me and M = Sn, CIDNP signals are observed in the PMR spectrum during thermolysis, indicating homolytic cleavage of the C-Hg bond. Photolysis of compounds with M = Si or Sn also involves free radical intermediates. The conditions for the occurrence of symmetrisation reactions [2 RHgMR'_3 \Rightarrow R₂Hg + (R'_3M)₂Hg] are investigated and discussed. Attempts to prepare compounds R₃C-Hg-PbR'_3 were unsuccessful.

Zusammenfassung

Die Darstellung von Verbindungen $R_3C-Hg-MR'_3$ (R= Si, Ge, Sn) wird beschrieben und die Stabilität solcher Verbindungen gegenüber Hitze- und Lichteinwirkung diskutiert. Wenn R = Me und M = Sn, werden während der Thermolyse CIDNP-Signale im PMR-Spektrum beobachtet; dies deutet auf homolytische Spaltung der C-Hg-Bindung hin. Die Photolyse der Verbindungen mit M = Si oder Sn läuft auch über radikalische Zwischenstufen. Die Bedingungen für das Stattfinden von Symmetrisierungsreaktionen [2 RHgMR'_3 = R_2Hg + (R'_3M)_2Hg] werden untersucht und diskutiert. Versuche, Verbindungen R_3C-Hg-PbR'_3 darzustellen, waren erfolglos.

Einleitung

Verbindungen des Typs $(R_3M)_2$ Hg (M = C, Si, Ge, Sn, Pb) sind zum Teil schon seit vielen Jahren (M = C), zum Teil erst seit wenigen Jahren (M = Si, Ge, Sn) und teilweise noch nicht bekannt (M = Pb). Verbindungen mit M = Si und Ge sind von mehreren Arbeitsgruppen untersucht worden [1], wobei hauptsächlich synthetische Anwendungen erforscht wurden*. Hierbei waren in manchen Fällen Zwischenprodukte mit C—Hg—Metall-Bindungen postuliert worden: diese sollten zu den gefundenen Endprodukten weiterreagieren. Obwohl die Darstellung solcher R_3C —Hg—MR'₃-Verbindungen (M = Si, Ge) von Razuvaev et al. beschrieben wurde [2], war am Anfang der vorliegenden Arbeit sehr wenig über das Verhalten solcher Verbindungen bekannt, und im Falle M = Sn waren sie noch unbekannt. Diese Arbeit befasst sich mit der Darstellung und Stabilität der Organometall—Quecksilberverbindungen R_3C —Hg—MR'₃.

Ergebnisse und Diskussion

28

Derstellung und Charakterisierung

Die Darstellung von Verbindungen $RHgSiMe_3$ und $RHgGeMe_3$ wurde analog der Methode von Vyazankin [2] durchgeführt (Gl. (1), (2)). Die so hergestellten

(1) (2)

$$(Me_3M)_2Hg + RHgX \xrightarrow{-40} RHgMMe_3 + MeMHgX$$

 $Me_3MHgX \rightarrow Me_3MX + Hg$

(M = Si, Ge; R = Me, Et, Pr, i-Pr, t-Bu)

Verbindungen sind blassgelbe Flüssigkeiten bzw. Festkörper; sie können durch Destillation gereinigt werden, aber Lichteinwirkung verursacht ihre Zersetzung (siehe unten). Tabelle 1 bringt eine Übersicht über die nach Gl. (1) dargestellten Verbindungen mit PMR-Daten. Die Kopplungskonstanten zwischen ¹⁹⁹Hg und Protonen steigen mit zunehmendem s-Charakter der entsprechenden Bindungen: so hat beispielsweise Di-tert-butylquecksilber $J(^{199}\text{Hg}-C-C-H)$ 104 Hz, während der Wert für tert-Butylquecksilberchlorid 252 Hz beträgt. Ausserdem nimmt die Kopplungskonstante $J(^{199}\text{Hg}-Si-C-H)$ in der Reihe (Me₃Si)₂Hg> [Hg(SiMe₃)₃]-> [Hg(SiMe₃)₄]²⁻ ab [3].

TABELLE 1

Verbindungen R—Hg—MMe- R M		Kp (°C/mm)	Hg(%) gef.(ber.)	J(¹⁹⁹ HgMCH) (Hz)	J(¹⁹⁹ HgXH) (Hz)
Me	Si	60/2	'70.49 (71.01)	52.0	74.0 ^a
Et	Si	40-42/0.06	65.62 (66.16)	48.5	а Б алана алын алын алын алын алын алын алын
Pr	Sì	44/0.05	62.75 (63.24)	48.5	91.0 ^c
i-Pr	Si	37-38/0.01	62.96 (63.24)	46.0	b
t-Bu	Si	Fp 25-28	59.97 (60.56)	45.0	93.0 ^c
Me	Ge	d	d (60.16)	42.0	84.5 ^a

a X = C. b Nicht bestimmt. cX = C-C. dNicht bestimmt (nur als Rohprodukt untersucht).

*Es existiert keine zusammenfassende Arbeit auf diesem Gebiet. An dieser Stelle sei auf zwei Arbeiten hingewiesen, andere Zitate befinden sich dort [1]. Die Verbindungen RHgMR's zeigen in allen Fällen eine Erhöhung von $J(^{199}$ Hg-M-C-H) gegenüber dieser Konstante in (Me₃Si)₂Hg (40.8 Hz) bzw. (Me₃Ge)₂Hg (37.5 Hz): die Erhöhungen liegen zwischen 9.8 und 26.8%, wobei Silylverbindungen eine Abnahme der Erhöhung in der Reihenfolge prim.-Alkyl > sek.-Alkyl > tert.-Alkyl aufweisen. Ausserdem tritt eine entsprechende Erniedrigung der Konstante $J(^{199}$ Hg-X-H) gegenüber dieser Konstante in R₂Hg auf; bei den Silylverbindungen sind in jeder Verbindung die prozentuale Erhöhung der einen Konstante und Erniedrigung der anderen Konstante fast gleich [4]. Offenbar ist die Hybridisierung am Quecksilber bei den unsymmetrischen anders als bei den symmetrischen Verbindungen, wobei die Hg-Si- bzw. Hg-Ge-Bindung immer erhöhten s-Charakter besitzt; dies deutet auf eine Ladungsverteilung mit schwach positiviertem Silicium bzw. Germanium hin. Die Abhängigkeit dieser Positivierung vom Alkylrest lässt sich anhand des induktiven Effektes erklären; so wird eine tert-Butylgruppe (+*I*-Effekt) am Quecksilber die Positivierung am Si bzw. Ge vermindern.

Es wäre denkbar, dass Alkyl(trialkylstannyl)quecksilberverbindungen gemäss Gl. (1) (M = Sn) dargestellt werden könnten. Da jedoch die symmetrischen Stannylquecksilberverbindungen sehr instabil sind [5], wären sie eine denkbar ungeeignete Quelle für die unsymmetrischen Verbindungen.

So wurde eine Transmetallierungsreaktion angewendet. Diese sollte, wie in Gl. (3), ablaufen. Die treibende Kraft für diese Reaktion wäre die Stabilität der

$RHgSiMe_3 + R'_3SnOMe \rightarrow RHgSnR'_3 + Me_3SiOMe$

gebildeten Si—O-Bindung (Dissoziationsenergie ca. 100 kcal/mol; vgl. Sn—O ca. 70 kcal/mol im Alkoxid). Diese Reaktion wurde mit verschiedenen Verbindungen RHgSiMe₃ und R'₃ SnOMe durchgeführt; sie konnte sehr gut mittels PMR-Spektroskopie verfolgt werden (Abnahme der SnOMe- und Zunahme der SiOMe-Banden) und lief bei Raumtemperatur innerhalb von mehreren Stunden ab. Me₃SiOMe entstand immer in quantitativer Ausbeute: wenn das Reaktionsgefäss gegen Licht geschützt wurde, fiel bei der Reaktion in den meisten Fällen kein oder nur sehr wenig ($\leq 10\%$) Quecksilber aus, so dass die Annahme berechtigt erschien, dass die Reaktion wie in Gl. (3) beschrieben ablief.

Lediglich in den Fällen R = Me, R' = Me und R = Et, R' = Me fiel während der Reaktion Quecksilber quantitativ aus, und es wurden Me₄Sn bzw. Me₃SnEt als einzige Organozinn-produkte erhalten. Dies deutet darauf hin, dass die Verbindungen MeHgSnMe₃ und EtHgSnMe₃ bei Raumtemperatur instabil sind, dass sie aber keiner Symmetrisierungsreaktion unterliegen: Me₆Sn₂ und Me₂Hg bzw. Et₂Hg konnten nicht nachgewiesen werden.

Nach Beendigung der Reaktion (PMR-Spektroskopie) wurden flüchtige Bestandteile an der Pumpe abgezogen. Es blieben, ausser in den erwähnten Fällen, die gewünschten Verbindungen RHgSnR'₃ als gelbe bis orangefarbige dickflüssige Öle, die stark licht- und luftempfindlich sind, zurück. Es wurden erstmals dargestellt: EtHgSnEt₃, PrHgSnEt₃, BuHgSnEt₃, t-BuHgSnMe₃, t-BuHgSnEt₃, t-BuHgSnBu₃ und t-BuHgSn-i-Bu₃. Die Verbindungen lieseen sich destillativ nicht reinigen; selbst bei kurzzeitigem Exhitzen auf ca. 100° bei 10⁻³ mm zersetzen sie sich alle unter Quecksilberausscheidung.

Zur Charakterisierung konnte auch die Massenspektrometrie (die bei den Siliciumverbindungen erfolgreich eingesetzt wurde) nicht benutzt werden. PMR-

29

(3)

Spektroskopie erlaubte aber bei den Verbindungen mit einem tert-Butylrest am Quecksilber eine ziemlich eindeutige Charakterisierung: diese Verbindungen zeigen nur eine t-Bu-Resonanz mit Kopplungstrabanten. $J(^{199}$ Hg-C-C-H) liegt zwischen 121 und 129 Hz (vgl. t-Bu₂Hg 104 Hz). Für t-BuHgSnMe₃ sind bei Raumtemperatur zwei Kopplungskonstanten messbar: $J(^{199}$ Hg-C-C-H) 129 Hz und $J(^{119}$ Sn-C-H) 47 Hz. Unter diesen Bedingungen findet ein schneller Austausch von Me₃Sn-Gruppen am Quecksilber statt: beim Abkühlen wird dieser Austausch verlangsamt, und weitere Kopplungstrabanten werden sichtbar. Bei -60° sind diese Trabanten schaff: $J(^{119}$ Sn-Hg-C-C-H) 36 Hz (Fig. 1). $J(^{199}$ Hg-Sn-C-H) konnte nicht mit Sicherheit bestimmt werden, da kleine Mengen an Zersetzungsprodukten von t-BuHgSnMe₃ vorhanden waren. Da es bislang nicht gelungen ist, Kopplungskonstanten in (Me₃Sn)₂Hg zu messen [5, 6], können keine Schlüsse auf die Ladungsverteilung in t-BuHgSnMe₃ gezogen werden.

Zusammenfassend kann man sagen, dass Verbindungen des Typs RHgSnR'₃ mittels Reaktion (3) leicht erhalten werden können und dass diese Verbindungen beträchtlich stabiler sind als die entsprechenden (R'₃Sn)_Hg-Verbindungen. Im nächsten Abschnitt wird auf die Stabilität näher eingegangen.

Stabilität, Photolyse und Thermolyse von RHgMR'₃

30

Silyl- und Germylquecksilberverbindungen. Untersuchungen in anderen Arbeitskreisen haben gezeigt, dass Verbindungen des Typs $(R_3Si)_2Hg$ bzw. $(R_3Ge)_2Hg$ eine beachtliche thermische Stabilität aufweisen; selbst bei 190° zersetzen sie sich nur langsam zu R_6Si_2 bzw. R_6Ge_2 und Hg. Nach neuesten Untersuchungen [7] treten dabei höchstwahrscheinlich keine freien Radikale auf. Die thermische Stabilität von $(Me_3Si)_2Hg$ wird stark herabgesetzt, wenn es in HMPT (Hexamethylphosphorsäuretriamid) gelöst wird [8]; hierbei entsteht eine rote Lösung, und die Reaktivität der Bimetallverbindung gegenüber vielen Reaktionspartnern wird erheblich gesteigert. Untersuchungen haben gezeigt, dass ein schneller Aus-

Fig. 1. PMR-Spektrum von t-BuHgSnMeg bei -60° in Toluol. Peaks, die mit + gekennzeichnet sind, sind Kopplungstrabanten. J(¹⁹⁹Hg-C-C-H) 129, J(¹¹⁹Sn-Hg-C-C-H) 36, J(¹¹⁹Sn-C-H) 47 Hz. tausch von Me₃Si-Gruppen am Quecksilber stattfindet, und dass die Austauschgeschwindigkeit schon durch Zugabe von kleinen Mengen HMPT um einen Faktor $\geq 10^4$ erhöht wird [4].

Bislang herrschte Unklarheit über die Symmetrisierungsreaktion (4). Lee

$2 \text{ RHgSiMe}_3 \neq \text{R}_2\text{Hg} + (\text{Me}_3\text{Si})_2\text{Hg}$

konnte bei Raumtemperatur keine Bildung von MeHgSiMe₃ aus Me₂Hg und (Me₃Si)₂Hg nachweisen [9], Becker fand [10], dass Et₂Hg und (Me₃Si)₂Hg beim Erhitzen in Benzol nicht miteinander reagierten, und es wurde kein Anzeichen für eine Reaktion zwischen t-Bu₂Hg und (Me₃Si)₂Hg in Benzol nach 24 h bei 80° gefunden. Jedoch fanden Marano und MacDiarmid [11], dass Et₂Hg und (Cl₃Si)₂Hg etwas EtHgSiCl₃ geben, während Schaaf und Oliver [12] eine Reaktion zwischen (Me₃Si)₂Hg und R₂Hg in den Fällen R = Methyl, Phenyl, Vinyl, Cyclopropyl, Benzyl, C₆Cl₅, CH₃—C=C und (Me₃Si)₂N nachweisen konnten. Es wurden unterschiedliche Reaktionszeiten beobachtet, wobei Me₂Hg anlangsamsten reagierte. Gleichgewichtskonstanten wurden nicht bestimmt: als Lösungsmittel wurden Cyclopentan, 1,2-Dimethoxyäthan und Benzol benutzt.

Wenn t-BuHgSiMe₃ oder EtHgSiMe₃ als Lösung in Toluol im NMR-Spektrometer auf +105° erhitzt werden, gibt es keine Anzeichen für einen raschen Austausch der Silylgruppen am Quecksilber: die Kopplungstrabanten bleiben scharf (bei 110° sind die Trabanten von (Me₃Si)₂Hg als molare Lösung in Toluol bereits verschwunden). Aber auch bei +37° in HMPT sind die Trabanten von EtHgSiMe₃ und t-BuHgSiMe₃ unverändert scharf (nach 30 Min.) Diese Ergebnisse lassen darauf schliessen, dass die Si-Hg-Bindung in RHgSiMe₃ erheblich stärker ist als in (Me₃Si)₂Hg. Die allgemeine Reaktivität dieser Verbindungen unterstützt diese Annahme.

Wenn nun EtHgSiMe₃ oder t-BuHgSiMe₃ im NMR-Spektrometer (als Lösung in HMPT) erhitzt werden, verschwinden plötzlich bei ca. 60° bzw. 80° die ¹⁹⁹Hg-Si-C-H-Kopplungstrabanten. Bei t-BuHgSiMe₃ wird t-Bu₂Hg rasch gebildet, auch wenn die Temperatur wieder erniedrigt wird: die Lösungen werden rot (d.h. (Me₃Si)₂Hg wird gebildet). Aber auch wenn t-BuHgSiMe₃ in HMPT bei Raumtamperatur steht, ist nach 12 h ca. 30% t-Bu₂Hg vorhanden: umgekehrt wird t-BuHgSiMe₃ aus t-Bu₂Hg und (Me₃Si)₂Hg gebildet, wenn HMPT als Lösungsnittel verwendet wird.

Zwei weitere Beobachtungen sind hierzu von Interesse: wenn t-BuHgSiMe₃ in HMFT auf 110° erhitzt wird, ist CIDNP bei den Methyl- und Methinprotonen de: gebildeten Isobutans zu sehen. t-Bu₂Hg zeigt keinen Effekt unter diesen Bedingungen: d.h., der Effekt rührt von t-BuHgSiMe₃ her. Und, wenn EtHgSiMe₃ in HMFT über 60° erhitzt wird, werden die Äthylprotonenresonanzen sehr breit: bei 90° ist nur eine breite Bande vorhanden. Die Banden vom HMPT und von den Me₃Si-Protonen sind unverändert scharf, beim Abkühlen werden auch die Äthylresonanzen wieder scharf. Ausserdem findet oberhalb von 60° etwas Gasentwicklung statt.

Alle diese Beobachtungen zeigen, dass RHgSiMe₃ nicht thermodynamisch begünstigt ist, sondern dass nur kinetische Faktoren für seine Stabilität in aromatischen Lösungsmitteln oder als Reinsubstanz verantwortlich sind. Wenn die Energie des Übergangszustandes für Reaktion (4) herabgesetzt wird, findet die Reaktion relativ rasch in beiden Richtungen statt: HMPT setzt, auf noch unbe-

(4)

kannte Weise, die Energie des Übergangszustandes herab. Die Ergebnisse von Schaaf und Oliver deuten darauf hin, dass der Übergangszustand in Abhängigkeit von R seine Energie ändert, so dass ein Katalysator wie HMPT nicht immer notwendig ist oder aber, dass andere Verbindungen, die in Spuren vorhanden waren, Reaktion (4) auch katalysieren können. Ausserdem ist es klar, dass zumindest bei höheren Temperaturen die Symmetrisierungsreaktion in HMPT neben oder über radikalische Prozesse abläuft.

Wenn etwas Luft in eine Probe von t-BuHgSiMe₃ bei 60° (im NMR-Spektrometer) eingespritzt wird, beobachtet man vorübergehend CIDNP für die Protonen der Produkte Isobutylen und Isobutan. Die Effekte sind klein, aber es ist offensichtlich, dass die Oxidation dieser Verbindung zumindest zum Teil radikalisch verläuft. Diese Beobachtung ist in Zusammenhang mit den Ergebnissen der Thermolyse von t-BuHgSnR₃ (siehe unten) zu sehen.

Die Photolyse von $(Me_3Si)_2Hg$ und $(Me_3Ge)_2Hg$ wurde auch von der Gruppe um Eaborn untersucht [13]; sie stellten fest, dass hier freie Me_3Si- bzw. Me_3Ge-Radikale gebildet werden. Erstere sind in der Lage, Benzol anzugreifen: dabei entsteht u.a. Me_3SiPh. Jedoch wird Benzol von Trimethylgermyl-radikalen nicht angegriffen. In der vorliegenden Arbeit konnte auch gezeigt werden, dass, obwohl $(Me_3Si)_2Hg$ und tert-Butylbromid selbst nach mehrstündigen Erhitzen auf 80° in Benzol nicht miteinander reagieren, eine lichtkatalysierte Reaktion schnell abläuft. Bei Bestrahlung von $(Me_3Si)_2Hg$ und einem Überschuss an tert-Butylbromid in Benzol mit einer Tageslichtlampe (Philips HPL 125) wurde das $(Me_3Si)_2Hg$ innerhalb von 2 h bei 30° verbraucht. Hierbei bilden sich Hg (95%), Me_6Si₂ (20%), Me_3SiBr (80%) und Folgeprodukte von Reaktionen des tert-Butylradikals (80%) (alle Werte bezogen auf eingesetztes $(Me_3Si)_2Hg$). Hierfür kann ein einfaches Reaktionsschema (Schema 1) aufgestellt werden. Hierbei laufen die Schritte 1 bis 4 sicherlich während der Reaktion ab; ob das Radikal Me_3SiHgnach 5 oder 7 weiterreagiert, kann z.Z. nicht entschieden werden.

SCHEMA 1

32

Als die Alkyl(trimethylsilyl)quecksilberverbindungen bei 30° in benzolischer Lösung mit der Tageslichtlampe bestrahlt wurden, konnte folgendes beobachtet werden: zunächst wurden bei gleichzeitiger Quecksilberausscheidung die Lösungen gelb; nach einer gewissen Zeit nahm die Gelbfärbung wieder ab.

PMR-Untersuchungen ergaben, dass die gelbe Färbung von $(Me_3Si)_2Hg$ herrührte, das zunächst gebildet wurde. Eine weitere Photolyse hiervon zu Me_6Si_2 und Hg erfolgte nur nach praktisch quantitativem Verbrauch von RHgSiMe₃. In den Fällen R = Et, Pr, t-Bu und PhCH₂ wurden die Reaktionen quantitativ durchgeführt: es entstand immer Me_6Si_2 und Hg in fast quantitativer Ausbeute ($\geq 95\%$). Die Gruppen R wurden in Folgeprodukte der Radikale R• überführt, d.h. aus Etentstand C_2H_4 und C_2H_6 , aus Pr· C_6H_{14} , aus t-Bu· $Me_2C=CH_2$, Me_3CH und Me_3CCMe_3 und aus PhCH₂ · Dibenzyl ($\geq 90\%$). Verbindungen R₂Hg oder RSiMe₃ wurden weder während noch am Ende der Reaktion gefunden. In einem Kontrollversuch wurde festgestellt, dass t-Bu₂Hg viel langsamer durch Bestrahlung zersetzt wird als t-BuHgSiMe₃.

Die Photolyse verläuft also klar in zwei getrennten Bruttoreaktionen:

2 RHgSiMe₃ $\xrightarrow{h\nu}$ Hg + (Me₃Si)₂Hg + 2 R· (schnell)

 $(Me_3Si)_2Hg \xrightarrow{h\nu} Hg + Me_3Si - SiMe_3$ (langsam)

Jedoch sind die einzelnen Reaktionsschritte bei der Bildung von $(Me_3Si)_2Hg$ unbekannt. Ob im Einleitungsschritt die C-Hg- oder Si-Hg-Bindung gespalten wird oder ob beide Spaltungen parallel ablaufen, kann noch nicht entschieden werden; auch über die Stabilität der möglichen Folgeradikale RHg· und Me₃SiHg· ist so gut wie nichts bekannt. Beide dürften jedoch sehr kurzlebig sein.

Am interessantesten ist die Frage, ob (Me₃Si)₂Hg durch Rekombination von zwei Me₃SiHg·-Radikalen mit anschliessender Hg-Ausscheidung oder durch eine S_H2-Reaktion eines Me₃ Si·Radikals am Quecksilber (Gl. 5) gebildet wird. Gegen die Letztere Möglichkeit spricht das Nichtauftreten von Me₃SiR, das durch

$$Me_3Si + RHgSiMe_3 \rightarrow (Me_3Si)_2Hg + R$$

Rekombination von Me₃Si \cdot und R \cdot zumindest in kleiner Ausbeute zustandekommen sollte, wenn beide Radikale frei auftreten.

Es gelang nicht, mittels ESR während der Photolyse freie Radikale nachzuweisen. Dies liegt sicherlich daran, dass die zur Verfügung stehende Lichtquelle zu schwach war.

Einen Hinweis auf den Ablauf der Photolyse von RHgSiMe₃ geben die Ergebnisse der lichtinduzierten Reaktionen von Nitrosobenzol mit EtHgSiMe₃ und t-BuHgSiMe₃. Im ersten Falle wurde kein radikalisches Produkt gefunden: die zweite Reaktion führte aber zur Bildung des Phenyl-tert-butylnitroxidradikals [14] in guter Ausbeute. Die Photolyse von t-Bu₂Hg oder t-BuHgSnEt₃ mit Nitrosobenzol lieferte dasselbe Radikal: dieses wurde mittels ESR identifiziert.

Diese Beobachtungen könnten ein Indiz dafür sein, dass bei der Photolyse von RHgSiMe₃ entweder die C-Hg- oder die Si-Hg-Bindung im ersten Schritt gespalten wird, je nachdem, was R ist. Demnach liefe bei R = t-Bu überwiegend die C-Hg-Spaltung, bei R = Et die Si-Hg-Spaltung ab.

Wenn die Photolyse von t-BuHgSiMe₃ in t-BuBr als Lösungsmittel durchgeführt wurde, entstanden als Produkte (Mengen bezogen auf eingesetztem

(5)

t-BuHgSiMe₃) Me₃SiBr (90%), Me₆Si₂ (7%), Hg (100%) und Folgeprodukte von Reaktionen von t-Bu (d.h. Isobutan, Isobutylen und Hexamethyläthan) (\geq 180%); (Me₃Si)₂Hg war während der Reaktion nur in sehr kleiner Menge (\leq 10%) vorhanden. Me₃SiBr könnte über einen Angriff von Me₃Si· oder von Me₃SiHg· an t-BuBr gebildet werden. Dass t-BuHgBr nicht gebildet wird, spricht gegen das Auftreten von t-BuHg·; jedoch erlaubt auch dieser Versuch keine endgültige Aussage über den Ablauf der Photolyse von RHgSiMe₃ in Benzol. Eine Reihe anderer Halogenverbindungen wurden zusammen mit RHgSiMe₃ photolysiert; in fast allen Fällen wurde das Trimethylsilylhalogenid in sehr guter Ausbeute gebildet.

Weitere Versuche sollen helfen, den Ablauf der Photolyse zu klären: die Ergebnisse der Photolyse von Verbindungen RHgSnR₃ zeigen erhebliche Unterschiede im Reaktionsablauf, wie aus dem nächsten Abschnitt ersichtlich sein wird.

Stannylquecksilberverbindungen. Dass die thermische Stabilität der Verbindungen RHgSnR₃ in den meisten Fällen (Ausnahmen bilden MeHgSnMe₃ und EtHgSnMe₃) beträchtlich höher ist als die der symmetrischen Verbindungen (R₃Sn)₂Hg, beweist allein die Tatsache, dass sie bei Raumtemperatur gebildet und isoliert werden können, ohne dass eine rasche Zersetzung eintritt.

Ein Vergleich der thermischen Stabilität der untersuchten Verbindungen zeigte, dass diese mit zunehmender Verzweigung der Alkylreste am Quecksilber, aber auch mit zunehmender Grösse und Verzweigung der Alkylreste am Zinn, zunimmt.

Obwohl also MeHgSnMe₃ und EtHgSnMe₃ nicht nachgewiesen werden konnten, liess sich die Bildung von t-BuHgSnMe₃ mit anschliessender Zersetzung leicht im NMR-Spektrometer bei 37° verfolgen. EtHgSnEt₃ zersetzte sich langsamer bei 37° und t-BuHgSnBu₃ selbst bei 70° nur zögernd.

Es spielen hier offenbar sterische und elektronische Faktoren eine Rolle: Die Zersetzung von MeHgSnMe₃ und von EtHgSnMe₃ ist höchstwahrscheinlich eine intramolekulare Reaktion (es wurden nur Me₄Sn bzw. Me₃SnEt gebildet), für die ein gewinkelter Übergangszustand nötig ist (I).

: (I)

Bei zunehmender Grösse und Verzweigung von R treten bei einem solchen Übergangszustand sterische Hinderungen auf. Aber auch der induktive Effekt der Gruppen R und R'spielt eine Rolle: Blaukat hat festgestellt [15], dass sich $(t-Bu_3Sn)_2Hg$ auch in Lösung bei höheren Temperaturen nur langsam, $(Bu_3Sn)_2Hg$ dagegen bei Raumtemperatur rasch zersetzt. Es ist jedoch schwierig, sterische und elektronische Faktoren dieser Art zu trennen.

Bei der Zersetzung benzolischer Lösungen von t-BuHgSnMe₃ oder t-BuHgSnEt₃ bei 37° im NMR-Spektrometer wurde CIDNP für die Protonen von Isobutylen und Isobutan beobachtet (Fig. 2) [16]. In allen Fällen waren AE-Multipletts [17] vor handen: diese Übereinstimmung mit den Ergebnissen der Photolyse von Pinacolon [17] erlaubte die Feststellung, dass die Polarisation in einem Radikalpaar zustande

Fig. 2. Radikalische Zersetzung von t-BuHgSnMe3 bei 60° in HMPT.

kam, das aus zwei tert-Butylradikalen bestand.

Eine Erhöhung der Temperatur auf 50-60° führte zur Vergrösserung der Signale; hier lief auch die Thermolyse (die anhand der Abnahme der tert-Butylresonanz verfolgt wurde) entsprechend schneller. CIDNP konnte so lange beobachtet werden, bis die Verbindung sich gänzlich zersetzt hatten, d.h. für ca. 30 bzw. 40 Minuten bei 37°.

tert-Butyl(tributylstannyl)quecksilber zeigte keine CIDNP selbst bei 75°; wegen der thermischen Stabilität dieser Verbindung muss die stationäre Radikalkonzentration dafür zu niedrig sein.

Die Zugabe kleiner Mengen von Luft zu den Proben von t-BuHgSnMe₃ oder t-BuHgSnEt₃ erhöhte die Amplitude der CIDNP-Signale vorübergehend um einen Faktor 2 bis 3; in Gegenwart von Luft findet eine rasche Oxidation der Substanzen statt, so dass die Radikalkonzentration höher ist.

CIDNP wurde bei Verbindungen, die am Quecksilber primäre oder sekundäre Alkylgruppen haben, nicht beobachtet. Manches spricht dafür, dass hier nicht nur die Stabilität der gebildeten Radikale R· eine Rolle spielt, sondern dass die tert-Butylverbindungen eine besondere Stellung einnehmen; sowohl die Reaktivität dieser Verbindungen als auch die anschliessend diskutierte Produktverteilung bei der Thermolyse und Photolyse von RHgSnR'3 deuten darauf hin.

Die beobachtete CIDNP zeigt, dass die Thermolyse von t-BuHgSnR₃ zumindest zum Teil über radikalische Stufen abläuft, wobei tert-Butylradikale gebildet werden. Aus apparativen Gründen ist es bislang nicht möglich gewesen, eine Photolyse dieser Verbindungen im NMR-Spektrometer durchzuführen.

Die Reaktionszeiten bei der Photolyse von RHgSnR' $_3$ sind (bei präparativen Ansätzen) wesentlich kürzer als bei der Thermolyse: während die Photolyse (mit der Tageslichtlampe) je nach Verbindung in 2 bis 15 Minuten bei 30° beendet ist, benötigt die Thermolyse umgerechnet 1 bis 48 h bei dieser Temperatur.

Die Produkte der Thermolyse und der Photolyse lassen sich bei einigen tert-Butylquecksilberverbindungen leicht bestimmen (mittels NMR und GLC): es werden immer Hg (\geq 90%), die normalen Folgeprodukte des tert-Butylradikals $(\geq 90\%)$ und das entsprechende Hexaalkyldistannan gebildet. Gleichung (6) gibt die Produkte wieder.

t-BuHgSnR₃ → t-Bu. + Hg + 0.5 R₆ Sn₂

Di-tert-butylquecksilber wird nicht gebildet und t-BuSnR₃ nur in kleinen Mengen.

Bei anderen Alkyl(trialkylstannyl)quecksilberverbindungen RHgSnR'₃ ist das Bild jedoch anders: die Produkte sind R_2 Hg, R'_6 Sn₂, Hg und R'_3 SnR. Die Produktverteilung hängt etwas von R und R' ab und ist auch bei der Photolyse und Thermolyse etwas verschieden. Versuche, die Produkte gaschromatographisch quantitativ zu erfassen, schlugen leider fehl: die Ergebnisse waren weder bei Produktgemischen noch bei Eichlösungen reproduzierbar.

Die Ergebnisse deuten jedoch darauf hin, dass bei t-BuHgSnR'₃ zunächst immer die C-Hg-Bindung gespalten wird, und zwar homolytisch. Zumindest bei der Photolyse läuft die Reaktion weiter über $(R_3Sn)_2$ Hg. Bei der Photolyse von t-BuHgSnMe₃ konnte (Me₃Sn)₂Hg als Reaktionsprodukt nachgewiesen werden. Es fiel beim Abkuhlen des Gemisches als roten Kristalle aus. Hier ist eine Analogie zum Verhalten von t-BuHgSiMe₃ sichtbar.

Bei anderen Verbindungen RHgSnR'₃ laufen offenbar zwei Reaktionen parallel ab. Es sind dies erstens eine intramolekulare Reaktion über den gewinkelten Übergangszustand (I) (Gl. 7) und zwietens eine Symmetrisierungsreaktion (Gl. 8) wobei (R'_3Sn_2Hg sich dann in R'_6Sn_2 und Quecksilber weiter zersetzt. Der

 $RHgSnR'_{3} \rightarrow Hg + RSnR'_{3}$

 $2 \text{ RHgSnR}'_3 \Rightarrow \text{R}_2\text{Hg} + (\text{R}'_3\text{Sn})_2\text{Hg}$

Übergangszustand für Reaktion (8) dürfte energetisch viel günstiger liegen als der für Reaktion (4). Sowohl (7) als auch (8) müssen molekulare Reaktionen sein, da keine Folgeprodukte von Radikalen R' entstehen.

Verbindungen mit M-Hg-Pb-Bindungen. Diese sind bislang in der Literatur nicht beschrieben worden. Obwohl es prinzipiell möglich wäre, sie mittels Reaktion (9) darzustellen, scheiterten alle

 $R_3MHgSiR'_3 + R''_3PbOR''' \rightarrow R_3MHgPbR''_3 + R'_3SiOR'''$

hierzu* durchgeführten Versuche. Eingesetzt wurden M = C, Si; R, R' = Me; R" = Ph, Bu und R''' = Me, OCOMe. In allen Fällen fand bei ca. -10° eine Reaktion statt, wobei das Silyl-alkoxid bzw. -acetat in quantitativer Ausbeute gebildet wurde. Es war jedoch nicht möglich, die Blei-Quecksilber-Verbindungen, die offenbar eine sehr geringe Stabilität besitzen, nachzuweisen: es entstanden immer Quecksilber, Blei und Bleialkyle bzw. Diplumbane.

Es ist jedoch geplant, unter Verwendung von geeigneten stabilisierenden Gruppen am Quecksilber und Blei diese Verbindungen darzustellen und zu charakterisieren.

^{*}Unter teilweiser Mitwirkung von Dr.B.C. Pant, University of Aston in Birmingham, England.

36

(6)

(7) (8)

(9)

Experimenteller Teil

Alle Versuche wurden unter Argon als Schutzgas durchgeführt. Zur Aufnahme von NMR-Spektren diente ein Varian A-60 D Spektrometer.

tert-Butyl(trimethylsilyl)quecksilber

Zu (Me₃Si)₂Hg (14 g, 40 mMol) in Toluol (50 ml) wurde bei -40° tert-BuHgCl (11.72 g, 40 mMol) gegeben: Quecksilber fiel sofort aus. Das Cemisch wurde auf Raumtemperatur erwärmt, das Quecksilber (7.8 g, 97%) abgetrennt und ein PMR-Spektrum des Gemisches gefahren. Dieses zeigte ausser Me₃SiCl zwei Banden mit Kopplungstrabanten; leichtflüchtige Komponenten wurden abgesaugt; es blieb ein blassgelbes Öl, Fp 25-28°, zurück. PMR (in Toluol): Signale bei $\tau 8.56$ [t-Bu HgSiMe₃, $J(^{199}$ Hg-C-C-H) 93.0 Hz], 9.86 [t-BuHgSiMe₃, $J(^{199}$ Hg-Si-C-H) 45.0 Hz].

Weitere Verbindungen $RHgSiMe_3$ (Tabelle 1) wurden auf analoge Weise dargestellt.

tert-Butyl(trimethylstannyl)quecksilber

Zu einer Suspension von Me₃SnOMe (1.6 g, 8.2 mMol) in Benzol (10 ml) wurde eine benzolische Lösung von t-BuHgSiMe₃ (2.7 g, 8.2 mMol) hinzugefügt. Nachdem sich das Me₃SnOMe gelöst hatte (ca. 1 h), wurde das Reaktionsgefäss gegen Licht geschützt. Der Ablauf der Reaktion wurde mittels PMR-Spektroskopie verfolgt (Abnahme der Sn-OMe und Zunahme der Si-OMe-Bande); in 4 h war die Reaktion beendet. Benzol und Me₃SiOMe (100%) wurden abgesaugt und Me₃SiOMe zusätzlich mittels GLC identifiziert; das entstandene t-BuHgSnMe₃ (tiefgelbes Öl) wurde in Toluol gelöst und mittels PMR untersucht: $J(^{199}Hg-C-C-H)$ 129 Hz, $J^{199}Hg-Sn-C-C-H)$ 36 Hz, $J(^{119}Sn-C-H)$ 47 Hz.

Weitere Verbindungen RHgSnR'₃ wurden auf analoge Weise dargestellt.

Dank

Ich danke der Deutschen Forschungsgemeinschaft für ihre Unterstützung meiner Arbeit an der Universität Dortmund. Weiterhin danke ich Herrn Prof. W.P. Neumann für wertvolle Diskussionen, Herrn J. Kleffner für experimentelle Mitarbeit und Herrn M.A. Ardjmandian und Frl. A. Kraemer für die Aufnahme von NMR-Spektren.

Literatur

- 1 U. Blaukat und W.P. Neumann, J. Organometal. Chem., 49 (1973) 323;
- N.S. Vyazankin, G.A. Razuvaev und O.A. Kruglaya, Z. Chem., 11 (1971) 53.
- 2 N.S. Vyazankin, E.N. Gladyshev, E.A. Archangel'skaya und G.A. Razuvaev, J. Organometal. Chem., 17 (1969) 340.
- 3 T.F. Schaaf und J.P. Oliver, J. Amer. Chem. Soc., 91 (1969) 4327.
- 4 T.N. Mitchell, J. Organometal. Chem., 38 (1972) 17.
- 5 W.P. Neumann und U. Blaukat, Angew. Chem., 81 (1969) 625.
- 6 T.F. Schaaf und J.P. Oliver, J. Organometal. Chem., 32 (1971) 307.
- 7 C. Eaborn, R.A. Jackson und R.W. Walsingham, J. Chem. Soc. Perkin Trans II, (1973) 366.
- 8 G. Neumann, Dissertation Univ. Dortmund, 1971.
- 9 A.G. Lee, J. Organometal. Chem., 16 (1969) 321. 10 H.-P. Becker, Dissertation Univ. Dortmund, 1971.

11 G.A. Marano und A.G. MacDiarmid, Inorg. Nucl. Chem. Lett., 5 (1969) 621.

12 T.F. Schaaf und J.P. Oliver, Inorg. Chem., 10 (1971) 1521.

13 S.W. Bennett, C. Eaborn und R.A. Jackson, J. Organometal. Chem., 21 (1970) 79.

14 A.K. Hoffmann, A.M. Feldman und E. Gelblum, J. Amer. Chem. Soc., 86 (1964) 646.
15 U. Blaukat, Dissertation Univ. Dortmund 1971.
16 T.N. Mitchell, Tetrahedron Lett., (1972) 2281.

38

17 H. Fischer, Fortschr. Chem. Forsch., 24 (1971) 1.

1. 20 AT 1